

Advantages of Low Flow and Identifying Leaks

• Ultrasonic Meters with Built-in Acoustic Leak Detection Result in Dramatic Water Loss Reductions

Presenters:

Graham Mattison- Solutions Manager Kamstrup

Devin Peterson- Smart Utility Professional Everett J. Prescott

0

Dedicated Smart Utility Team Specializing in AMI Networks, Remote Monitoring, and Leak Detection

Located locally in Shelbyville, IL

Headquartered in Gardiner, ME and we have been family owned and operated for 68 years serving the utility market

A Statistics

Over 67 years providing metering solutions

27 divisions covering 13 states

Local support and technical expertise supporting every customer

GM0

Who is Kamstrup?

A world leading manufacturer of advanced solid-state, or "static," metering solutions for smart energy and water utilities, Kamstrup is headquartered in Denmark with employees in more than 20 countries. For over 75 years, utilities around the world have trusted Kamstrup to deliver reliable metering solutions. Here in North America, Kamstrup is focused on empower water utilities.

- + Ultrasonic metering solutions
- + Network communications
- + Software applications

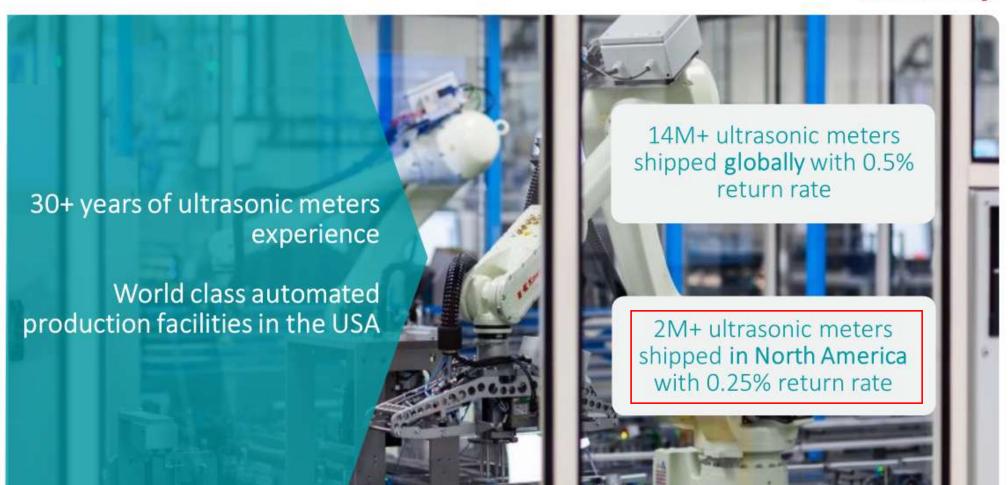
20+ Countries 75+ Years

GM0 The right side feels a little awkward. If we're going to talk about ourselves - let's toot our own horn a little: Change the word "supporting" to "empowering"

Keep the 3 bullet points:

- + Ultrasonic metering solutions
- + Network communications
- + Software applications

ADD: Made In Cumming, GA - USA!


Presenter notes:

Here in North American, Kamstrup is focused on empowering water utilities. with reliable, state-of-the-art, intelligent solutions that won't break the bank.

Kamstrup's industry leading portfolio of ultrasonic smart metering solutions for water utilities consistently rank highest in ultra-low flow accuracy, initial quality, long-term reliability and battery service life. Graham Mattison, 2024-06-21T01:26:25.519

Slide 3

kamstrup

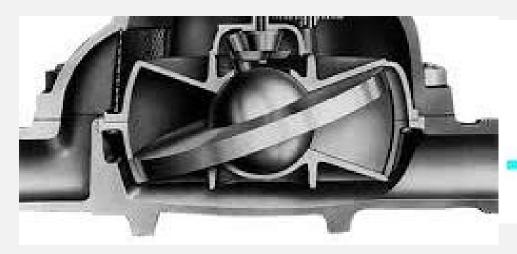
Slide 4

GMO I want this slide to emphasize our reliability and differentiate on our return rate for warranty service. Graham Mattison, 2024-06-20T23:49:24.544

GM0 0 Pretty it up however Graham Mattison, 2024-06-21T01:19:12.284

GM1 Presenter Notes:

While it's true that a significant number of meter manufacturers have introduced ultrasonic water meters in recent years, At Kamstrup we've been doing ultrasonics for over 30 years. Our technology is mature and extremely reliable. All of the meters we are gonna discuss here today are manufactured at our world class automated production facility in Cumming, GA.

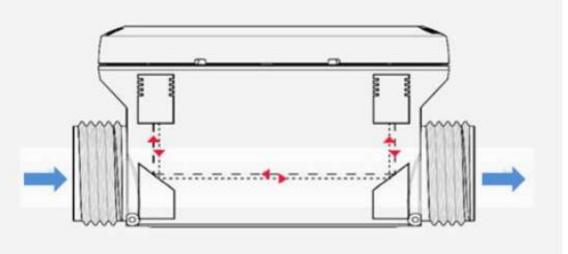

Before we start diving into the technology, I just want to briefly say, at Kamstrup, we take pride in the quality of our products. Of the more than 14 million ultrasonic meters we've shipped globally our return rate is one-half of 1%. In North America, our return rate is less than one-quarter of 1%. And we use the phrase "return rate" for a very good reason - if a meter returns to the factory for service at any point during its 20 year warranty period, for any reason other than physical damage, we count that. And our return rate in North America is still less than 1/4 of 1%

Graham Mattison, 2024-06-24T08:50:16.853

Physical Overview – PD vs. Static (Ultrasonic): Why It Matters

Nutating Disc

ALD Ultrasonic


GM0 The drought icon is weird. Let's brainstorm on that. Graham Mattison, 2024-06-21T10:33:22.451

GM0 0 When it comes to water loss and NRW programs in general, we surveyed 30 different utilities to get a sense of what is driving their investment in their non-revenue water and water loss recovery programs. And obviously, you see the 3 big ones at the top - Revenue, Regulations, Drought/Water Scarcity. One of the biggest drivers that we weren't expecting - was customer satisfaction - and it ties hand in had with system efficiency and environmental impacts. Consumers want to know - what is the utility doing to conserve water and reduce water loss - yes, there are rebate programs for low-flow toilets and shower heads and more efficient appliances - but consumers, especially in areas affected by drought and water scarcity issues, increasingly want to know - what is my utility doing to conserve water and help reduce water loss.

Graham Mattison, 2024-06-24T09:45:52.883

Ultra-Low Flow Capture & The Ultrasonic Measuring Principle


ALD Meters Lead the industry in Low Flow Accuracy!

Water Leakage: EPA Statistics

"The average household's leaks can account for more than 10,000 gallons of water wasted every year..."

*Source: EPA, WaterSense: <u>Fix a Leak</u> <u>Week | WaterSense | US EPA</u>

Let's Do The Math!

• What is the flow rate of 10,000 gallons per year?

10,000 ÷ 365 ÷ 1440 = 0.019 GPM Gallons Days Minutes Average per year per year per day flow rate

- Why this is important?????
- Only ALD Meters have a starting flow at 0.010 GPM

Low Flow Analysis Study

📔 LogView HC	CW	Lo	gView HCW		Help	About	Ettings
flowIQ™ 2250						🖨 Connect n	ew meter
Meter details	Read	Serial Number: 77102232 Records: 12			Graph		
Interval Log	Load	Start time: 15/05/2017 05:38:21		Last update time: 01/11/2018 11:15:19			
Yearly Log	Save	– Minimum [USgal/min]	- Maximum [USgal/min]	 Volume [USgal] 			
Monthly Log	Reset	0.00	0.04	2711.697			
Daily Log		0.04	0.09	668.395			
		0.09	0.49	3353.164			
Hourly Log		0.49	0.74	2257.163			of
Minute Log 1		0.74	7.49	36941.169			
Info Log		7.49	10.00	483.866			
		10.00	12.50	0.000			
Configuration Log		12.50	14.99	0.000			
SW Success Log		14.99	18.74	0.000			
SW Attempt Log		18.74	25.00	0.000			
		25.00	31.25	0.000			
Service (Year log)		31.25	249.77	0.000			

Efficiency Causes Challenges

Flow rate histogram examples

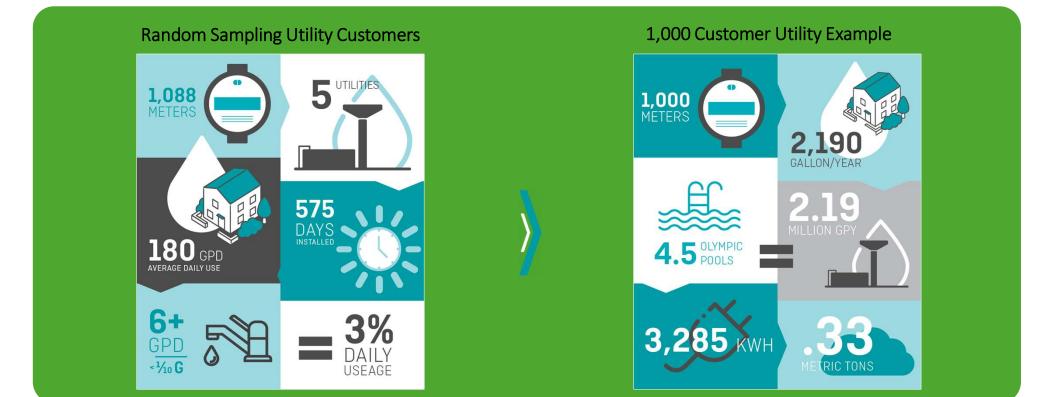
Minimum [US gal/min]	Maximum [US gal/min]	Volume [US gal]
0.00	0.04	26,234.619
0.04	0.09	9,503.887
0.09	0.49	5,898.728
0.49	0.74	936.064
0.74	7.49	184,894.119
7.49	10.00	3,922.904
10.00	12.50	245.578
12.50	14.99	0.748
14.99	18.74	0.544

Installed May 2022 – read Aug 2023

Townhouse

35,738.5 gallons below 1/10 GPM or 17.18% of all flow

Minimum [US gal/min]	Maximum [US gal/min]	Volume [US gal]
0.00	0.04	23,822.802
0.04	0.09	57,232.910
0.09	0.49	47,952.197
0.49	0.74	10,496.208
0.74	7.49	98,882.182
7.49	10.00	5,898.479
10.00	12.50	9,884.411
12.50	14.99	25,264.692
14.99	18.74	45,447.810

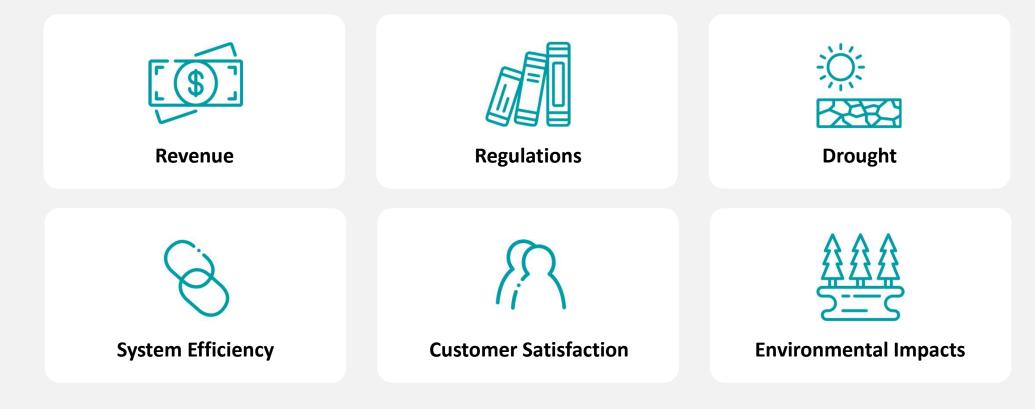

Installed March 2021 – read Nov 2023

Home on Large Lot

81,055.7 gallons below 1/10 GPM or 24.95% of all flow (83 gal / day)

Ultra-Low Flow is not inconsequential

They leveraged solid-state ultrasonic meter technology to gain an average increase of 8% in annual revenues. They reduced their non-revenue water by 63% which allowed them to purchase less wholesale water resulting in a 54% reduction in their water cost.


Milcrofton System Overview

Service Area: 94 sq miles Water Mains: 330 miles Primary Source: Wholesale Purchase Service Connections: 11,000+ C&I Meters: 40 (2"+) Billing: Water Only

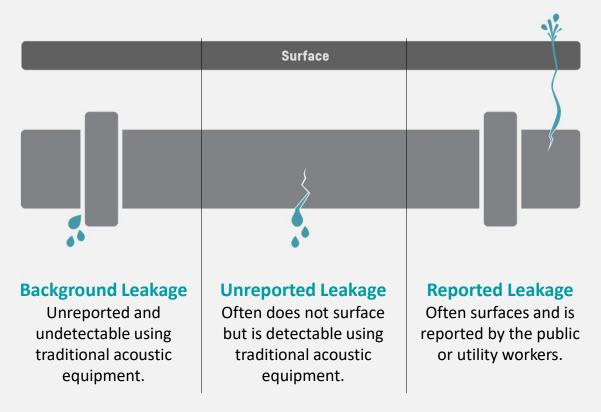
Water Loss: Why it matters

TOTAL Water Supplied	Authorized Consumption	Billed Authorized Consumption	Billed Metered Consumption		
		Unbilled	Billed Unmetered Consumption Unbilled Unmetered Consumption		
		Authorized	•		
	Water Loss	Consumption	Unbilled Metored C s start registering consumption @ 1/100 th per minute Lowest Starting Flow Rate In L 1The Industry! (0.01 gpm) ^{te} (The Industry! (0.01 gpm) ^{te}		
		Appare <mark>of a gallon</mark>			
		Real Losses	Leaks on Distribution Water Mains	Water	
			Leaks on Service Connections	F	

Non-Revenue Water – Ultra Low Flow + ALD: Why It Matters

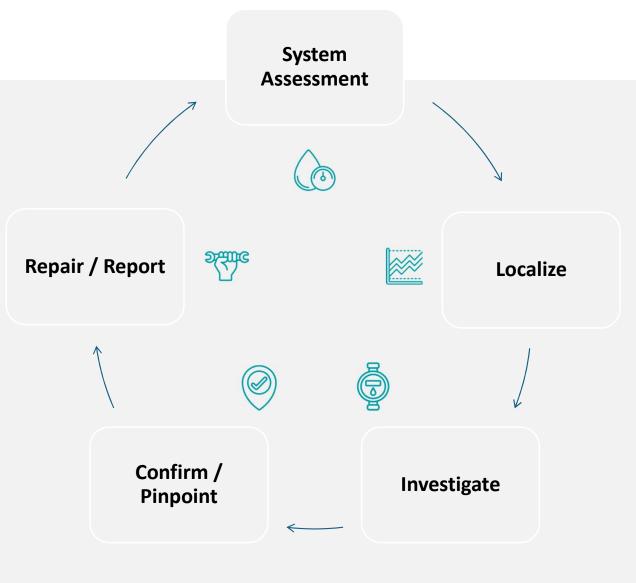
GM0 The drought icon is weird. Let's brainstorm on that. Graham Mattison, 2024-06-21T10:33:22.451

GM0 0 When it comes to water loss and NRW programs in general, we surveyed 30 different utilities to get a sense of what is driving their investment in their non-revenue water and water loss recovery programs. And obviously, you see the 3 big ones at the top - Revenue, Regulations, Drought/Water Scarcity. One of the biggest drivers that we weren't expecting - was customer satisfaction - and it ties hand in had with system efficiency and environmental impacts. Consumers want to know - what is the utility doing to conserve water and reduce water loss - yes, there are rebate programs for low-flow toilets and shower heads and more efficient appliances - but consumers, especially in areas affected by drought and water scarcity issues, increasingly want to know - what is my utility doing to conserve water and help reduce water loss.


Graham Mattison, 2024-06-24T09:45:52.883

What Types Of Water Main Leaks Are We Trying To Identify?

(Hint: Not This One)



Types of Leaks

Leak Detection as We know it

Acoustic Leak Detection – Survey Technologies

Ground Mic / Listening Stick

Lift-&-Shift Noise Loggers

In-Pipe Surveys

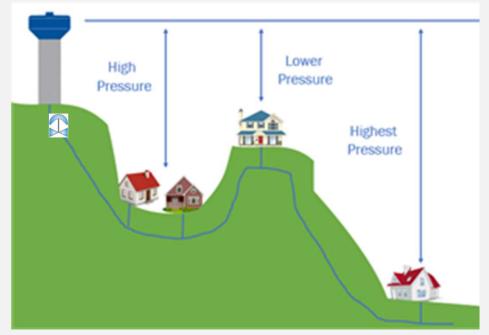
Cellular Correlating Leak Noise Loggers

Correlators

Satellite Leak Detection

Acoustic Leak Detection – Survey Technologies

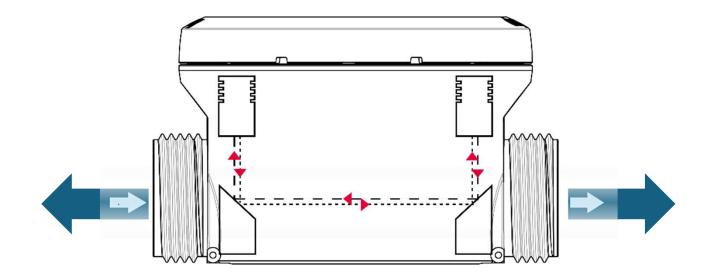
One-Time Leak Survey Tools


Survey Tool	Primary Use
Electronic Listening Tools "Sticks" Ground Microphones	Surveying systems; sounding fittings; confirming leaks
RF/Other Local Communication Acoustic Noise Data Loggers	Identify main leaks and adjacent service line leaks where possible using lift & shift methodology
Leak Noise Correlator	Pinpointing leaks within 3 ft (available in both real and non-rea time systems)
Satellite Leak Detection	One-time survey of large areas to identify potable water within 300 ft radius (282,743 sq. ft. area of interest)
In-Pipe Leak Detection Survey	Surveying large mains (16"+) or to confirm accuracy of leak on smaller pipe
In-Meter Pressure Monitoring	Quickly Identify catastrophic leaks. Great for verifying a hydraulic model. Zero–Point drifts continuously, can't be re-zeroed in-service.

What Are Critical Points?

Critical points are the high elevation areas within the pressure zone that are most adversely affected during peak demand periods

-OR -


Critical and Essential Infrastructure (Hospitals, Assisted Living Facilities, Schools, etc.) where any supply disruption or pressure deficiency poses a high risk to public health and human safety.

"The high point, beyond the low point, in the zone.

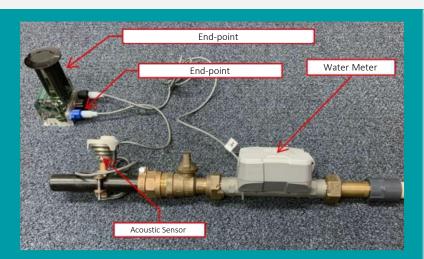
What Is "Built-In" Acoustic Leak Detection?

Acoustic Sensors With The Ultrasonic Measuring Principle

With the integral acoustic sensor, it is possible to measure noise in both directions of the pipe.

The acoustic sensor does not influence the flow measurements at any time.

So... What Does That Actually Look Like?


It Looks Like A Water Meter.

Because That's <u>All</u> It Is.

That's The Magic!

Reduced Complexity to Deliver the Future, Today

Legacy Non-Revenue Water Solutions

Meter Cost + Radio Cost + Leak Sensor Cost

Meter installation + Radio installation + Leak Sensor installation

2 Wires

3 Hardware Components to Manage / Troubleshoot

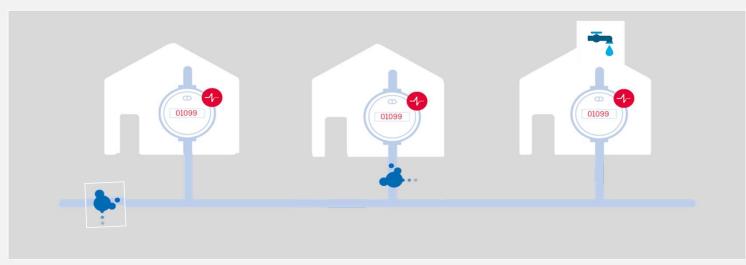
3 Different Warranties

Unlikely 100% Distribution Coverage

flowIQ[®] 2200 with Embedded Acoustic Leak Detection Built-in

Just The Meter Cost

Just The Meter Installation


No Wires

- 1 Hardware Component to Manage / Troubleshoot
- 1 Warranty
- **100% Distribution Coverage**

What Types of Leaks Can Be Identified? ...With a Water Meter?

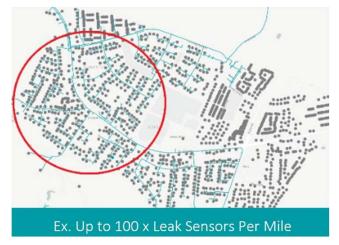
How does it work?

- It is well known that a leak will generate energy in the form of noise / sound.
- The built-in acoustic sensor allows the meters to measure acoustic noise within the distribution network upstream from the meter.
- Provide additional "info codes" (alarms) for any unusual customer side usage (continuous consumption/customer-side leaks).

Why Use "Built-In" Acoustic Leak Detection?

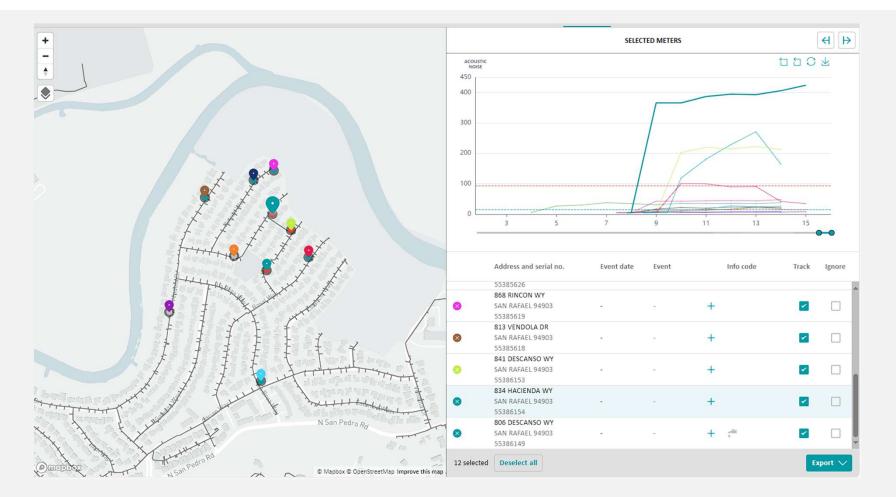
		i. dicta	nce thru pipe wall	based on pipe size and	l material:		
	for Leak	Voise transmission dista	fice and file		Material	Diameter	Velocity
F	FYI - Quick Reference for Leak Noise transmission distance thru pipe wall based on pipe size at the pipes, particularly iron mains between 6 inches and 12 inches, copper services, and Asbestos-cement pipe and PVC pipe do not transmit the sounds of feet in every direction. Distances transmitted for the "Hiss" or "Whoosh" sounds of water leaks are a function of the first of a well as the pipe material:				Polyvinyl Chloride (PVC)	(mm) 40 80 150	(m/s) 565 540 530
	Distances transmitted for the Prise of pipe diameter as well as the pipe material: Distance Sounds Travel for 2 GPM Leak at 60 PSI					150	1220
	Pipe Material and Diameter	600 to 1000 feet	Temperature	Speed of Soun	Cast-Iron	250	1160
	at a Cast Iron Pipe	400 to 800 feet 200 to 400 feet	- t - (°C)	(m/s)		350	1120
	12 inch Cast Iloit Tipe 400			Water		25	1375
	12 inch Cast Iron Pipe 24 inch Cast Iron Pipe 6 inch AC Pipe	300 to 500 feet 100 to 300 feet	0	1403 1427		40	1350
	12 inch AC Pipe		10	1427	Steel	60	1330
	a inch PVC PIPE	100 to 200 feet 50 to 100 feet	20	1481	Steel		
	12 inch PVC Pipe 24 inch PVC Pipe		30	1507		90	1286
		40	1526		150	1200	
Leak noise travels faster and farther through the water column			50	1541		250	1150
			60	1552			
			70	1555			
tha	an it does along th	e pipe wall.	80 90	1555 1550			
		• •		1000			

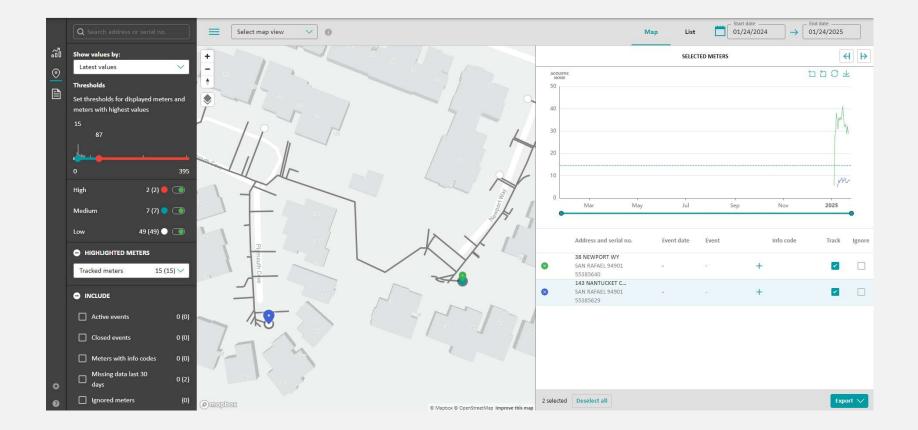
Minimum Viable Survey Deployment vs Complete System Coverage


Main Line Coverage Only

Traditional Leak Loggers

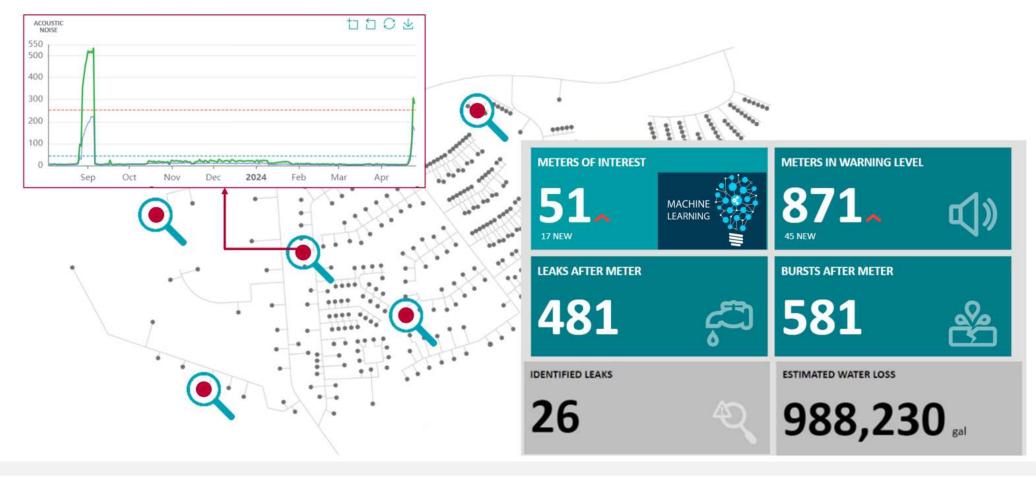
50%+ Of All Distribution System Leaks Occur At Or Near Service Connections.


Service & Main Line Coverage


ALD Meters

With 10x As Many Sensors Per Mile Compared To Acoustic Leak Monitoring Solutions Installed On Valves And Hydrants - It's Almost Impossible For Leaks To Hide!

Leak Detection – Minimum Viable Survey Deployment



Leak Detection – Minimum Viable Survey Deployment

Leak Detection Software

Imagine easily surveying your entire system every day

A Built-In Acoustic Advantage

Acoustic Leak Detection Across Your Entire Water Distribution Network. 7,300 Distribution-Wide Acoustic Leak Surveys Over 20 Years	No Additional: Hardware, Infrastructure Or Manpower Required.	Focus & Prioritize Leak Investigations Get Closer. 10x More Leak Monitoring Points Per Survey (Compared To Other Fixed-Base Leak Monitoring Technologies) More Actionable Data With Less Wasted Effort	Proactively Monitor For New Distribution Leaks Every 55 Minutes! 26/7 365 Days A Year For 20 Years!

Case Studies & Testimonials

Mt. Vernon, IL

Population: 14,600

6296 Residential AMI Ultrasonic Water Meters

7100 Total Water Meters

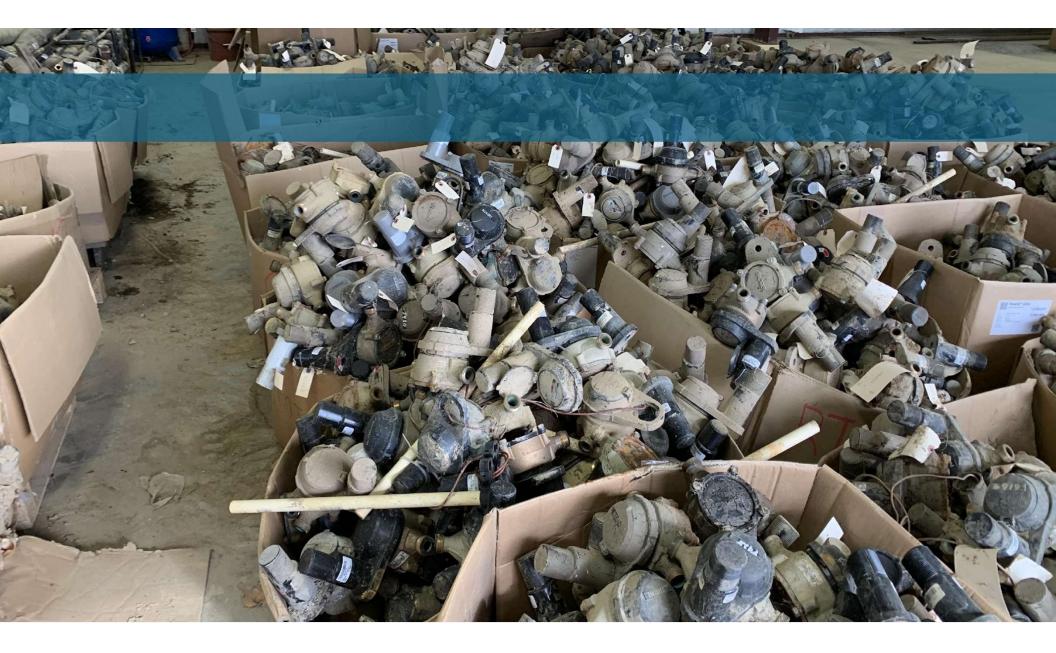
4 Data Collectors

System installed Q3 of 2018

We data logged 354 residential meters to find the approximate value captured in range of 0.04-0.25

Minimum Gal/Min	Maximum Gal/Min	Total for 6.25 Years for 354 meters	Average gal consumed/ Year/meter	Total consumption of all residential meters/ year	Total Consumption over 20 years
0.04	0.09	1,122,341 gal	507 gal/meter/year	507*6296= 3,192,072	3,192,072*20 =63,841,440
0.09	0.25	1,284,580 gal	580 gal/meter/year	580*6296= 3,651,680	3,651,680*20= <mark>73,033,600</mark>
Total		2,406,921 gal		6,843,752	136,875,040 gal over 20 years

Extra Money from Capturing Low Flow


Current water and sewer rates per first 1000 for Mt. Vernon is roughly \$19. From our data the city will be able to bill an extra \$130,031 per year from accurate low flow data.

Over the life of the system which is 20 years, the city will be able to bill an extra \$2,600,620

Town of Oneida, TN

- 4,620 AMI / ALD Meters
- 15 Data Collectors
- 118 Square Miles
- 322 Miles of Mainline Pipe
- 6 Month Deployment

Water Loss at 51%

Oneida Water Department under new management seeing the water **loss at 51%**, chose to go with the new AMI/ALD meter due to its overwhelming accuracy and reliability.

In the first 3 months, Oneida went from 51% Non-Revenue water loss, down to 28%.

- Of that, **10.7%** was after the initial total changeout. Which indicates the existing water meters were not registering accurately.
- At the initial Kamstrup meter startup Oneida had 77 meters that had acoustic sound levels over 100 noise value indicating possible leaks.

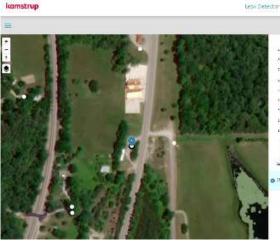
Initiated an aggressive water loss recovery program:

- Placing **2 full time employees** with leak detection equipment.
- Using ALD, 70+ leaks were located and/or repaired by the Distribution repair crew. (2022)

Currently:

• Expect to be at or below 15% water loss in 2024 which will save approximately \$140,000 in lost revenue and gained 36 working days not having to read meters to spend more time finding water leaks.

Cost Savings

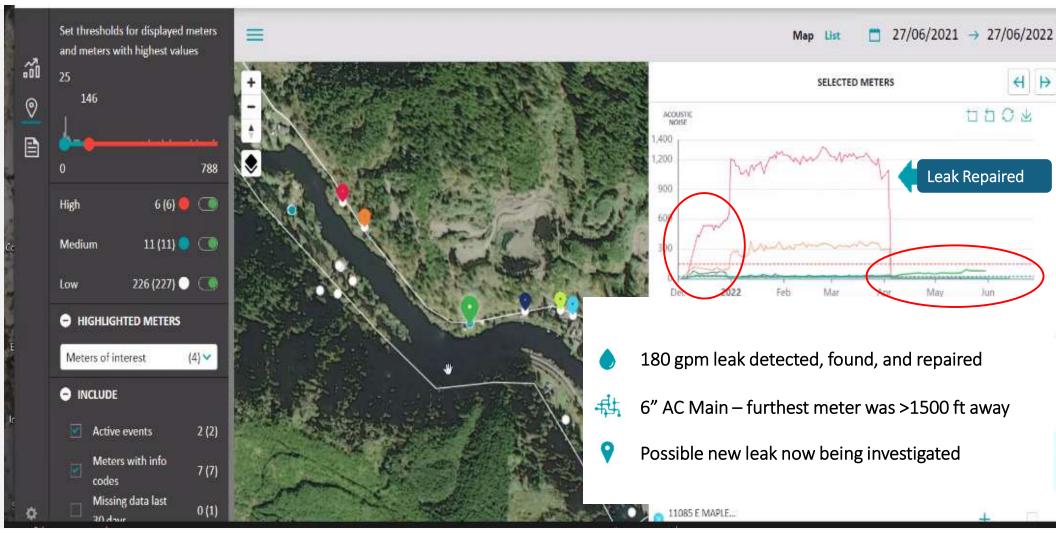

During the initial changeout, Oneida's water treatment plant was operating on average around **14-15 hours** per day. 3 months later it was now down to **11-12 hours per day** resulting in even more dramatic **OPEX Savings** in Electricity, Treatment Chemicals, and Man Hours.

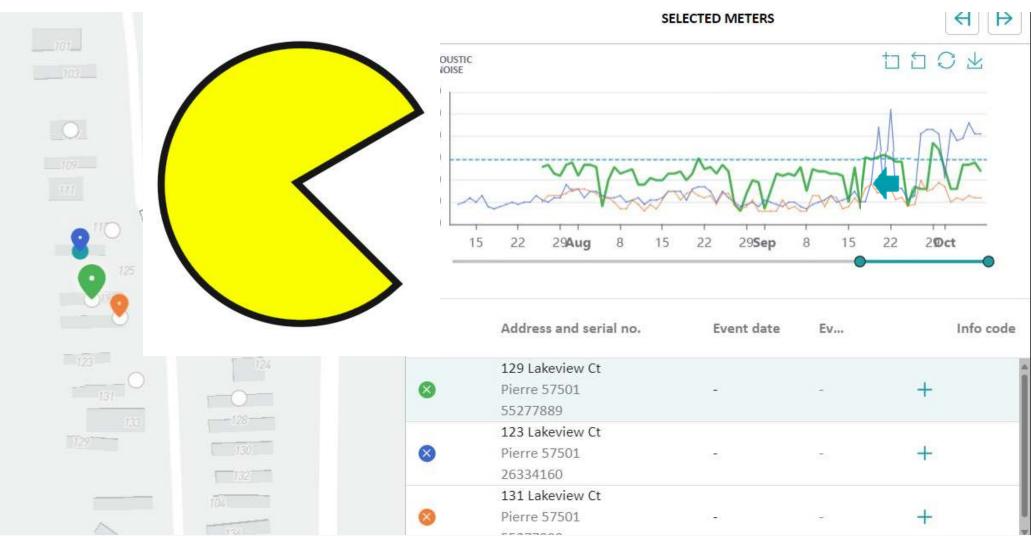
Fun Fact:

A 3 hour per day reduction in water treatment plant runtime equals 1.5 months less runtime (Over 45 WTP Operating Days Saved) in just year one!

Oneida, TN

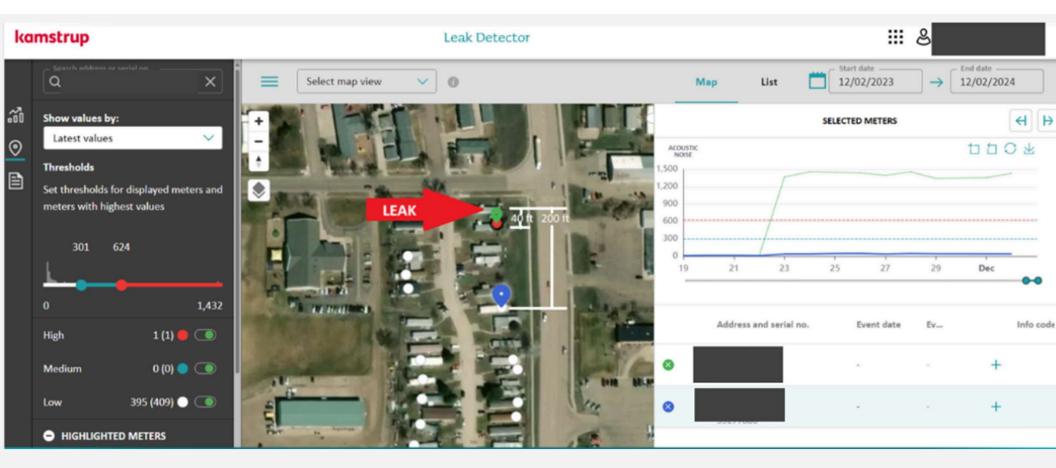
- High noise detected on single meter
- Service line leak had been running a minimum of 4.5 months
- The total NRW would account to \$21,000 in 12 months*


Leak estimated at 4 GPM and had been running for at least 4 months 777,600 for 135 days

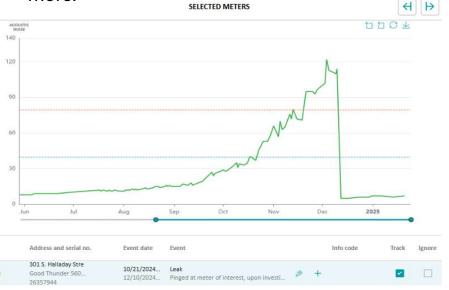

Utility Service Line made of PVC

Distance to leak was approximately 50 ft

*based on TN American Water base rate


Mapleton Water District, OR

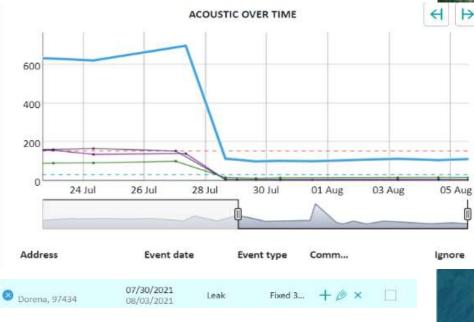
Pierre, South Dakota


Pierre, South Dakota

Good Thunder, MN

AMR (Drive-By) with built-in ALD Non-surfacing utility-side leak identified

- The leak was draining into the sewer, so it did not surface.
- The leak probably would not have surfaced, but rather would have broken the line eventually and the customer would have been out of service in mid to late January.
- If the repair was done as a service emergency in January, it would have cost a minimum of 30% more.


Leak was 2 feet inside the curb stop - 50 ft from the meter.

The leak was draining into the sewer and did not surface.

If the repair was done as a service emergency in January, it would have cost a minimum of 30% more.

Row River Valley, OR

• Main line leak found by meters up to <u>½ mile away!</u>

Leak on a 14" Main

-ft

Distance heard up to half a mile on both ends from galvanized pipe